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Abstract

Rainfall-Runoff and Signal Separation Problems: The process of converting rainfall into runoff is
a highly nonlinear problem due to the soil-water interaction that starts when rainfall reaches the ground.
Additional variables to consider are evaporation, transpiration, losses due to vegetation and land use, and
the different flow processes that take place in a watershed. For instance, baseflow is a much slower process
than groundwater and surface flow. Given records of rainfall and runoff data, one can build an accurate
state-space model such as

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk,

where at time k, uk, yk, and xk are, respectively, the rainfall, runoff, and the state of the system. Such
models have been used in real-time forecasting scenarios for flood control purposes [12]. However, the
above model does not take into account the nonlinearities of the rainfall-runoff process. Most lumped
rainfall-runoff models separate the baseflow and groundwater components from the measured runoff hy-
drograph in an attempt to model these as linear hydrologic reservoir units. Similarly, rainfall losses due
to infiltration as well as other abstractions are separated from the measured rainfall hyetograph, which
are then used as inputs to the linear hydrologic reservoir units. This data pre-processing is in essence a
nonlinear signal separation problem that separates rainfall into infiltration and excess rainfall, and the
measured hydrograph into surface flow and groundwater flow. These are then used to build separate
linear models such as
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In the separation process, a TLS approach is used since the infiltration process is an exponential signal.
Thus, the classical NMR fitting techniques [2, 6, ?, 17] are used.

Physical Parameter Extraction Problems: When modeling physical processes such as infiltration,
where water flows into different compartments, one is faced with a physical parameter extraction problem.
This is quite evident in black-box system identification where an unknown similarity transformation matrix
destroys the physical meaning of the problem. Here we show that such similarity trsnsformation can be
recovered as a post identification TLS problem. That is, suppose the identified state-space system matrices
are {Ā, B̄, C̄, D̄}, while the physical parameter matrices are those of a mass-spring-damper system with
mass m, spring constant k, and damping coefficient b. The table below shows the parameter matrices.
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Physical Model Identified Model

A =

[

0 1
− k

m
− b

m

]

Āc =

[

a11 a12

a21 a22

]

B =

[

0
1

m

]

B̄c =

[

b11

b21

]

C =
[

1 0
]

C̄c =
[

c11 c12

]

D =
[

0
]

D̄c =
[

0
]

The two systems are related by a similarity transformation T , i.e., T ĀT−1 = A, T B̄ = B, and C̄T−1 = C.
As one can see, this system of equations is nonlinear, but if we re-write it as T Ā = AT , T B̄ = B, and
C̄ = CT , then we convert the problem into a linear one. It turns out that the solution can be framed as
an orthogonal complement problem of the form

[

t11 t12 t21 t22 M N Z −1
]
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

a11 a12 0 0 b11 0 −1 0
a21 a22 0 0 b21 0 0 −1
−1 0 a11 a12 0 b11 0 0

0 −1 a21 a22 0 b21 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 c11 c12


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= 01×8,

or

xTA = 01×8,

where

Z =
1

m

M = −
k

m
t11 −

b

m
t21

N = −
k

m
t12 −

b

m
t22.

We will generalize the above results and show an example of a two-tank reservoir model.

Other Applications and Related Methods: We will also discuss applications of TLS in hyperspec-
tral analysis, variogram fitting of spatial processes, and Chemometrics applications in the environemental
sciences.

KEYWORDS: Horton’s infiltration model, hydrograph separation, variogram fitting, exponential data
fitting, singular value decomposition, total least squares, nonlinear least squares, and state-space models,
physical model identification, hyperspectral analysis, partial least squares.
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